Fields with vanishing $K_2$. Torsion in $H^1(X,K_2)$ and $Ch^2(X)$
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 108-118
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper describes fields $F$ of nonzero characteristic with the property that for all finite extensions $E/F$ $K_2E=0$. We consider a somewhat wider class of fields which includes finite and separably closed fields. For smooth projective varieties $X$ over such a field we show that the groups $H^1(X,K_2)\{l\}$ and $H^2(X_{et},\mathbf Q_l|\mathbf Z_l(2))$, $NH^3(X_{et},\mathbf Q_l|\mathbf Z_l(2))$ and $Ch^2(X)\{l\}$ are isomorphic. These results are applied to describe the groups $SK_1$ of a smooth affine curve over such a field.
@article{ZNSL_1982_116_a11,
author = {I. A. Panin},
title = {Fields with vanishing $K_2$. {Torsion} in~$H^1(X,K_2)$ and $Ch^2(X)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--118},
year = {1982},
volume = {116},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a11/}
}
I. A. Panin. Fields with vanishing $K_2$. Torsion in $H^1(X,K_2)$ and $Ch^2(X)$. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 108-118. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a11/