Arithmetic properties of three-dimensional algebraic tori
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 102-107
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We compute the Shafarevich-Tate group, the kernel of the weak approximation and the Manin groups of three-dimensional algebraic tori defined over an algebraic number field. A minimal example of a torus with fractional Tamagawa number is constructed. A criterion for the validity of the Hasse norm principle for extensions of degree four of an algebraic number field is given.
			
            
            
            
          
        
      @article{ZNSL_1982_116_a10,
     author = {B. \`E. Kunyavskii},
     title = {Arithmetic properties of three-dimensional algebraic tori},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--107},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/}
}
                      
                      
                    B. È. Kunyavskii. Arithmetic properties of three-dimensional algebraic tori. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 102-107. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/