Arithmetic properties of three-dimensional algebraic tori
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 102-107
Cet article a éte moissonné depuis la source Math-Net.Ru
We compute the Shafarevich-Tate group, the kernel of the weak approximation and the Manin groups of three-dimensional algebraic tori defined over an algebraic number field. A minimal example of a torus with fractional Tamagawa number is constructed. A criterion for the validity of the Hasse norm principle for extensions of degree four of an algebraic number field is given.
@article{ZNSL_1982_116_a10,
author = {B. \`E. Kunyavskii},
title = {Arithmetic properties of three-dimensional algebraic tori},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--107},
year = {1982},
volume = {116},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/}
}
B. È. Kunyavskii. Arithmetic properties of three-dimensional algebraic tori. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 102-107. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/