Arithmetic properties of three-dimensional algebraic tori
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 102-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the Shafarevich-Tate group, the kernel of the weak approximation and the Manin groups of three-dimensional algebraic tori defined over an algebraic number field. A minimal example of a torus with fractional Tamagawa number is constructed. A criterion for the validity of the Hasse norm principle for extensions of degree four of an algebraic number field is given.
@article{ZNSL_1982_116_a10,
     author = {B. \`E. Kunyavskii},
     title = {Arithmetic properties of three-dimensional algebraic tori},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--107},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/}
}
TY  - JOUR
AU  - B. È. Kunyavskii
TI  - Arithmetic properties of three-dimensional algebraic tori
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 102
EP  - 107
VL  - 116
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/
LA  - ru
ID  - ZNSL_1982_116_a10
ER  - 
%0 Journal Article
%A B. È. Kunyavskii
%T Arithmetic properties of three-dimensional algebraic tori
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 102-107
%V 116
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/
%G ru
%F ZNSL_1982_116_a10
B. È. Kunyavskii. Arithmetic properties of three-dimensional algebraic tori. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 102-107. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a10/