Subnormalizer of net subgroups in the general linear group over a ring
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 14-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Lambda$ be a commutative ring in which the elements of the form $\varepsilon^2-1$, $\varepsilon\in\Lambda^*$ generate the unit ideal and assume that $\sigma$ is any $D$-net of ideals of $\Lambda$ of order $n$. It is shown that the normalizer $N(\sigma)$ of the net subgroup $G(\sigma)$ (RZhMat, 1977, 2A280) coincides with its subnormalizer in $GL(n,\Lambda)$. For noncommutative $\Lambda$ the corresponding result is obtained under the assumptions: 1) in $\Lambda$ the elements of the form $\varepsilon-1$, where $\varepsilon$ runs through all invertible elements of the center of $\Lambda$, generate the unit ideal, and 2) the subgroup $G(\sigma)$ contains the group of block diagonal matrices with blocks of order $\geqslant2$.
			
            
            
            
          
        
      @article{ZNSL_1982_116_a1,
     author = {Z. I. Borevich and L. Yu. Kolotilina},
     title = {Subnormalizer of net subgroups in the general linear group over a ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a1/}
}
                      
                      
                    TY - JOUR AU - Z. I. Borevich AU - L. Yu. Kolotilina TI - Subnormalizer of net subgroups in the general linear group over a ring JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 14 EP - 19 VL - 116 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a1/ LA - ru ID - ZNSL_1982_116_a1 ER -
Z. I. Borevich; L. Yu. Kolotilina. Subnormalizer of net subgroups in the general linear group over a ring. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 14-19. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a1/