Subnormalizer of net subgroups in the general linear group over a ring
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 14-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a commutative ring in which the elements of the form $\varepsilon^2-1$, $\varepsilon\in\Lambda^*$ generate the unit ideal and assume that $\sigma$ is any $D$-net of ideals of $\Lambda$ of order $n$. It is shown that the normalizer $N(\sigma)$ of the net subgroup $G(\sigma)$ (RZhMat, 1977, 2A280) coincides with its subnormalizer in $GL(n,\Lambda)$. For noncommutative $\Lambda$ the corresponding result is obtained under the assumptions: 1) in $\Lambda$ the elements of the form $\varepsilon-1$, where $\varepsilon$ runs through all invertible elements of the center of $\Lambda$, generate the unit ideal, and 2) the subgroup $G(\sigma)$ contains the group of block diagonal matrices with blocks of order $\geqslant2$.
@article{ZNSL_1982_116_a1,
     author = {Z. I. Borevich and L. Yu. Kolotilina},
     title = {Subnormalizer of net subgroups in the general linear group over a ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--19},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a1/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - L. Yu. Kolotilina
TI  - Subnormalizer of net subgroups in the general linear group over a ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 14
EP  - 19
VL  - 116
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a1/
LA  - ru
ID  - ZNSL_1982_116_a1
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A L. Yu. Kolotilina
%T Subnormalizer of net subgroups in the general linear group over a ring
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 14-19
%V 116
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a1/
%G ru
%F ZNSL_1982_116_a1
Z. I. Borevich; L. Yu. Kolotilina. Subnormalizer of net subgroups in the general linear group over a ring. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 14-19. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a1/