Net determinant over a Bezoutian local ring
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 5-13
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\sigma$ be any $D$-net of ideals of order $n$ over a commutative local Bezoutian ring $R$ and denote by $G(\sigma)$ the corresponding net subgroup in the general linear group of degree $n$ over $R$ (RZhMat, 1977, 2A280). We give an explicit computation of the factor group $G(\sigma)/E(\sigma)$, where $E(\sigma)$ is the subgroup generated by all elementary transvections in $G(\sigma)$.
			
            
            
            
          
        
      @article{ZNSL_1982_116_a0,
     author = {Z. I. Borevich and N. A. Vavilov},
     title = {Net determinant over a {Bezoutian} local ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a0/}
}
                      
                      
                    Z. I. Borevich; N. A. Vavilov. Net determinant over a Bezoutian local ring. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 5-13. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a0/