Net determinant over a Bezoutian local ring
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 5-13

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma$ be any $D$-net of ideals of order $n$ over a commutative local Bezoutian ring $R$ and denote by $G(\sigma)$ the corresponding net subgroup in the general linear group of degree $n$ over $R$ (RZhMat, 1977, 2A280). We give an explicit computation of the factor group $G(\sigma)/E(\sigma)$, where $E(\sigma)$ is the subgroup generated by all elementary transvections in $G(\sigma)$.
@article{ZNSL_1982_116_a0,
     author = {Z. I. Borevich and N. A. Vavilov},
     title = {Net determinant over a {Bezoutian} local ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a0/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - N. A. Vavilov
TI  - Net determinant over a Bezoutian local ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 5
EP  - 13
VL  - 116
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a0/
LA  - ru
ID  - ZNSL_1982_116_a0
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A N. A. Vavilov
%T Net determinant over a Bezoutian local ring
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 5-13
%V 116
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a0/
%G ru
%F ZNSL_1982_116_a0
Z. I. Borevich; N. A. Vavilov. Net determinant over a Bezoutian local ring. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 5-13. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a0/