Behavior of the generalized solutions of the Dirichlet problem for higher-order elliptic equations in the neighborhood of the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 114-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Making use of the method of weight functions and of energy inequalities, similar to the Saint-Venant principle, the authors obtain estimates which characterize the behavior of the generalized solutions of the Dirichlet problem for the general higher-order elliptic equation in the neighborhood of a boundary point. In the case of two independent variables one has obtained an estimate of the maximum of the modulus of the solution in the neighborhood of a boundary point.
@article{ZNSL_1982_115_a9,
author = {V. A. Kondrat'ev and O. A. Oleinik},
title = {Behavior of the generalized solutions of the {Dirichlet} problem for higher-order elliptic equations in the neighborhood of the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--125},
publisher = {mathdoc},
volume = {115},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a9/}
}
TY - JOUR AU - V. A. Kondrat'ev AU - O. A. Oleinik TI - Behavior of the generalized solutions of the Dirichlet problem for higher-order elliptic equations in the neighborhood of the boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 114 EP - 125 VL - 115 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a9/ LA - ru ID - ZNSL_1982_115_a9 ER -
%0 Journal Article %A V. A. Kondrat'ev %A O. A. Oleinik %T Behavior of the generalized solutions of the Dirichlet problem for higher-order elliptic equations in the neighborhood of the boundary %J Zapiski Nauchnykh Seminarov POMI %D 1982 %P 114-125 %V 115 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a9/ %G ru %F ZNSL_1982_115_a9
V. A. Kondrat'ev; O. A. Oleinik. Behavior of the generalized solutions of the Dirichlet problem for higher-order elliptic equations in the neighborhood of the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 114-125. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a9/