Solution of the Dirichlet problem for the Monge–Ampere equation in weight spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 97-103
Cet article a éte moissonné depuis la source Math-Net.Ru
One proves the regular solvability of the problem: $\det(u_{xx})=f(x,u,u_x)\ge\nu>0$, $u\mid_{\partial\Omega}=0$ for $f(u,u,\rho)\in C^{k+\alpha}(\overline{\mathfrak A})$, $\overline{\mathfrak A}\equiv\{x\in\overline\Omega;u\in R^1;\rho\in R^n\}$, $k\ge2$, under the natural consistency conditions of the dimensions of the convex domain $0<\alpha<1$, $\Omega\subset R^n$ and the growth of the function $f(x,u,\rho)$ with respect to $\rho$.
@article{ZNSL_1982_115_a7,
author = {N. M. Ivochkina},
title = {Solution of the {Dirichlet} problem for the {Monge{\textendash}Ampere} equation in weight spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--103},
year = {1982},
volume = {115},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a7/}
}
N. M. Ivochkina. Solution of the Dirichlet problem for the Monge–Ampere equation in weight spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 97-103. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a7/