Solution of the Dirichlet problem for the Monge--Ampere equation in weight spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 97-103

Voir la notice de l'article provenant de la source Math-Net.Ru

One proves the regular solvability of the problem: $\det(u_{xx})=f(x,u,u_x)\ge\nu>0$, $u\mid_{\partial\Omega}=0$ for $f(u,u,\rho)\in C^{k+\alpha}(\overline{\mathfrak A})$, $\overline{\mathfrak A}\equiv\{x\in\overline\Omega;u\in R^1;\rho\in R^n\}$, $k\ge2$, under the natural consistency conditions of the dimensions of the convex domain $0\alpha1$, $\Omega\subset R^n$ and the growth of the function $f(x,u,\rho)$ with respect to $\rho$.
@article{ZNSL_1982_115_a7,
     author = {N. M. Ivochkina},
     title = {Solution of the {Dirichlet} problem for the {Monge--Ampere} equation in weight spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--103},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a7/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - Solution of the Dirichlet problem for the Monge--Ampere equation in weight spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 97
EP  - 103
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a7/
LA  - ru
ID  - ZNSL_1982_115_a7
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T Solution of the Dirichlet problem for the Monge--Ampere equation in weight spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 97-103
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a7/
%G ru
%F ZNSL_1982_115_a7
N. M. Ivochkina. Solution of the Dirichlet problem for the Monge--Ampere equation in weight spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 97-103. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a7/