Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 83-96

Voir la notice de l'article provenant de la source Math-Net.Ru

For second-order quasilinear degenerate elliptic equations, having the structure of $(A,\vec0)$-elliptic equations in a bounded domain $\Omega\subset R^n$, $n\ge2$, one establishes theorems of existence and uniqueness for the generalized solutions of the first boundary-value problem, bounded together with their $A$-derivatives of first order and also of first and second order. The case of linear second-order $(A,\vec0)$-elliptic equations are separately considered.
@article{ZNSL_1982_115_a6,
     author = {A. V. Ivanov},
     title = {Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 83
EP  - 96
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/
LA  - ru
ID  - ZNSL_1982_115_a6
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 83-96
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/
%G ru
%F ZNSL_1982_115_a6
A. V. Ivanov. Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 83-96. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/