Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 83-96
Voir la notice de l'article provenant de la source Math-Net.Ru
For second-order quasilinear degenerate elliptic equations, having the structure of $(A,\vec0)$-elliptic equations in a bounded domain $\Omega\subset R^n$, $n\ge2$, one establishes theorems of existence and uniqueness for the generalized solutions of the first boundary-value problem, bounded together with their $A$-derivatives of first order and also of first and second order. The case of linear second-order $(A,\vec0)$-elliptic equations are separately considered.
@article{ZNSL_1982_115_a6,
author = {A. V. Ivanov},
title = {Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--96},
publisher = {mathdoc},
volume = {115},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/}
}
TY - JOUR AU - A. V. Ivanov TI - Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 83 EP - 96 VL - 115 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/ LA - ru ID - ZNSL_1982_115_a6 ER -
%0 Journal Article %A A. V. Ivanov %T Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations %J Zapiski Nauchnykh Seminarov POMI %D 1982 %P 83-96 %V 115 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/ %G ru %F ZNSL_1982_115_a6
A. V. Ivanov. Existence and uniqueness theorems for $A$-regular generalized solutions of the first boundary-value problem for $(A,\vec0)$-elliptic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 83-96. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a6/