A test for the absence of the singular continuous spectrum in the Friedrichs model
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 61-71

Voir la notice de l'article provenant de la source Math-Net.Ru

For the proof of the absence of the singular continuous spectrum in the manybody scattering problem, we suggest a new method using the analogue of the triangular interlacing operators in the inverse scattering problem.
@article{ZNSL_1982_115_a4,
     author = {A. F. Vakulenko},
     title = {A test for the absence of the singular continuous spectrum in the {Friedrichs} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/}
}
TY  - JOUR
AU  - A. F. Vakulenko
TI  - A test for the absence of the singular continuous spectrum in the Friedrichs model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 61
EP  - 71
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/
LA  - ru
ID  - ZNSL_1982_115_a4
ER  - 
%0 Journal Article
%A A. F. Vakulenko
%T A test for the absence of the singular continuous spectrum in the Friedrichs model
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 61-71
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/
%G ru
%F ZNSL_1982_115_a4
A. F. Vakulenko. A test for the absence of the singular continuous spectrum in the Friedrichs model. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 61-71. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/