A test for the absence of the singular continuous spectrum in the Friedrichs model
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 61-71
Cet article a éte moissonné depuis la source Math-Net.Ru
For the proof of the absence of the singular continuous spectrum in the manybody scattering problem, we suggest a new method using the analogue of the triangular interlacing operators in the inverse scattering problem.
@article{ZNSL_1982_115_a4,
author = {A. F. Vakulenko},
title = {A test for the absence of the singular continuous spectrum in the {Friedrichs} model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--71},
year = {1982},
volume = {115},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/}
}
A. F. Vakulenko. A test for the absence of the singular continuous spectrum in the Friedrichs model. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 61-71. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/