A test for the absence of the singular continuous spectrum in the Friedrichs model
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 61-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the proof of the absence of the singular continuous spectrum in the manybody scattering problem, we suggest a new method using the analogue of the triangular interlacing operators in the inverse scattering problem.
			
            
            
            
          
        
      @article{ZNSL_1982_115_a4,
     author = {A. F. Vakulenko},
     title = {A test for the absence of the singular continuous spectrum in the {Friedrichs} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--71},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/}
}
                      
                      
                    A. F. Vakulenko. A test for the absence of the singular continuous spectrum in the Friedrichs model. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 61-71. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a4/