Solutions of the stationary Navier--Stokes system of equations with an infinite Dirichlet integral
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 251-263

Voir la notice de l'article provenant de la source Math-Net.Ru

In unbounded domains $\Omega$ of the three-dimensional Euclidean space, having several exits $\Omega_i$ at infinity of a sufficiently general form, one finds the solution $\vec v(x)$ of the stationary Navier–Stokes system, equal to zero on the boundary of the domain $\Omega,$ having arbitrary flow rates $\alpha_i$ through each exit $\Omega_i$, $i=1,\dots,m$ ($\sum_{i=1}^m\alpha_i=0$), and having an unbounded Dirichlet integral $\int_\Omega|\vec v_x|^2\,dx=+\infty$. One gives sufficient conditions for the existence of a solution.
@article{ZNSL_1982_115_a20,
     author = {V. A. Solonnikov},
     title = {Solutions of the stationary {Navier--Stokes} system of equations with an infinite {Dirichlet} integral},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {251--263},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a20/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - Solutions of the stationary Navier--Stokes system of equations with an infinite Dirichlet integral
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 251
EP  - 263
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a20/
LA  - ru
ID  - ZNSL_1982_115_a20
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T Solutions of the stationary Navier--Stokes system of equations with an infinite Dirichlet integral
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 251-263
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a20/
%G ru
%F ZNSL_1982_115_a20
V. A. Solonnikov. Solutions of the stationary Navier--Stokes system of equations with an infinite Dirichlet integral. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 251-263. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a20/