Solutions of the stationary Navier--Stokes system of equations with an infinite Dirichlet integral
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 251-263
Voir la notice de l'article provenant de la source Math-Net.Ru
In unbounded domains $\Omega$ of the three-dimensional Euclidean space, having several exits $\Omega_i$ at infinity of a sufficiently general form, one finds the solution $\vec v(x)$ of the stationary Navier–Stokes system, equal to zero on the boundary of the domain $\Omega,$ having arbitrary flow rates $\alpha_i$ through each exit $\Omega_i$, $i=1,\dots,m$ ($\sum_{i=1}^m\alpha_i=0$), and having an unbounded Dirichlet integral $\int_\Omega|\vec v_x|^2\,dx=+\infty$. One gives sufficient conditions for the existence of a solution.
@article{ZNSL_1982_115_a20,
author = {V. A. Solonnikov},
title = {Solutions of the stationary {Navier--Stokes} system of equations with an infinite {Dirichlet} integral},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {251--263},
publisher = {mathdoc},
volume = {115},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a20/}
}
TY - JOUR AU - V. A. Solonnikov TI - Solutions of the stationary Navier--Stokes system of equations with an infinite Dirichlet integral JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 251 EP - 263 VL - 115 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a20/ LA - ru ID - ZNSL_1982_115_a20 ER -
V. A. Solonnikov. Solutions of the stationary Navier--Stokes system of equations with an infinite Dirichlet integral. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 251-263. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a20/