Theoretical basis of the method of successive approximations for stationary problems of the mechanics of a~viscous fluid with free separation boundaries
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 228-235

Voir la notice de l'article provenant de la source Math-Net.Ru

One considers problems with free separation boundaries for flows of a viscous incompressible fluid, described by a complete system of Navier–Stokes equations. One presents a scheme for the construction of approximate methods, giving the possibility to obtain the foundation of energy-type estimates. These schemes are constructed on the basis of a priori estimates, obtained previously at the proof of existence and uniqueness theorems.
@article{ZNSL_1982_115_a18,
     author = {V. Ya. Rivkind},
     title = {Theoretical basis of the method of successive approximations for stationary problems of the mechanics of a~viscous fluid with free separation boundaries},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {228--235},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a18/}
}
TY  - JOUR
AU  - V. Ya. Rivkind
TI  - Theoretical basis of the method of successive approximations for stationary problems of the mechanics of a~viscous fluid with free separation boundaries
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 228
EP  - 235
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a18/
LA  - ru
ID  - ZNSL_1982_115_a18
ER  - 
%0 Journal Article
%A V. Ya. Rivkind
%T Theoretical basis of the method of successive approximations for stationary problems of the mechanics of a~viscous fluid with free separation boundaries
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 228-235
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a18/
%G ru
%F ZNSL_1982_115_a18
V. Ya. Rivkind. Theoretical basis of the method of successive approximations for stationary problems of the mechanics of a~viscous fluid with free separation boundaries. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 228-235. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a18/