Solvability of the Dirichlet problem for degenerate quasilinear elliptic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 178-190

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded domain of the n-dimensional $$ \sum_{i=1}^n\frac\partial{\partial x_i}(a^{l_i}(u)|u_{x_i}|^{m_i-2}u_{x_i})=f(x), $$ where $x=(x_1,\dots,x_n)$, $l_i\ge0$, $m_i>1$, the function $f$ is summable with some power, the nonnegative continuous function $a(u)$ vanishes at a finite number of points and satisfies $\varliminf_{|u|\to\infty}a(u)>0$. One proves the existence of bounded generalized solutions with a finite integral $$ \int_\Omega\sum_{i=1}^na^{l_i}(u)|u_{x_i}|^{m_i}\,dx $$ of the Dirichlet problem with zero boundary conditions.
@article{ZNSL_1982_115_a14,
     author = {P. Z. Mkrtychyan},
     title = {Solvability of the {Dirichlet} problem for degenerate quasilinear elliptic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--190},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a14/}
}
TY  - JOUR
AU  - P. Z. Mkrtychyan
TI  - Solvability of the Dirichlet problem for degenerate quasilinear elliptic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 178
EP  - 190
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a14/
LA  - ru
ID  - ZNSL_1982_115_a14
ER  - 
%0 Journal Article
%A P. Z. Mkrtychyan
%T Solvability of the Dirichlet problem for degenerate quasilinear elliptic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 178-190
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a14/
%G ru
%F ZNSL_1982_115_a14
P. Z. Mkrtychyan. Solvability of the Dirichlet problem for degenerate quasilinear elliptic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 178-190. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a14/