Solvability of the Dirichlet problem for degenerate quasilinear elliptic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 178-190
Voir la notice de l'article provenant de la source Math-Net.Ru
In a bounded domain of the n-dimensional
$$
\sum_{i=1}^n\frac\partial{\partial x_i}(a^{l_i}(u)|u_{x_i}|^{m_i-2}u_{x_i})=f(x),
$$
where $x=(x_1,\dots,x_n)$, $l_i\ge0$, $m_i>1$, the function $f$ is summable with some power, the nonnegative continuous function $a(u)$ vanishes at a finite number of points and satisfies $\varliminf_{|u|\to\infty}a(u)>0$. One proves the existence of bounded generalized solutions with a finite integral
$$
\int_\Omega\sum_{i=1}^na^{l_i}(u)|u_{x_i}|^{m_i}\,dx
$$
of the Dirichlet problem with zero boundary conditions.
@article{ZNSL_1982_115_a14,
author = {P. Z. Mkrtychyan},
title = {Solvability of the {Dirichlet} problem for degenerate quasilinear elliptic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--190},
publisher = {mathdoc},
volume = {115},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a14/}
}
P. Z. Mkrtychyan. Solvability of the Dirichlet problem for degenerate quasilinear elliptic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 178-190. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a14/