Absence of De Giorgi-type theorems for strongly elliptic equations with complex coefficients
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 156-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One constructs examples of strongly elliptic second-order differential equations in the divergence form with measurable bounded complex coefficients in $\mathbb R^n$, $n\ge3$, whose generalized solutions are not bounded in any neighborhood of the origin.
@article{ZNSL_1982_115_a12,
     author = {V. G. Maz'ya and S. A. Nazarov and B. A. Plamenevskii},
     title = {Absence of {De} {Giorgi-type} theorems for strongly elliptic equations with complex coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--168},
     year = {1982},
     volume = {115},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a12/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - S. A. Nazarov
AU  - B. A. Plamenevskii
TI  - Absence of De Giorgi-type theorems for strongly elliptic equations with complex coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 156
EP  - 168
VL  - 115
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a12/
LA  - ru
ID  - ZNSL_1982_115_a12
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A S. A. Nazarov
%A B. A. Plamenevskii
%T Absence of De Giorgi-type theorems for strongly elliptic equations with complex coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 156-168
%V 115
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a12/
%G ru
%F ZNSL_1982_115_a12
V. G. Maz'ya; S. A. Nazarov; B. A. Plamenevskii. Absence of De Giorgi-type theorems for strongly elliptic equations with complex coefficients. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 156-168. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a12/