Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 137-155
Cet article a éte moissonné depuis la source Math-Net.Ru
One proves the finite-dimensionality of a bounded set $M$ of a Hilbert space $H$, negatively invariant relative to a transformation $V$, possessing the following properties: For any points $v$ and $\tilde v$ of the set $M$ one has $$ \|V(v)-V(\tilde v)\|\le l\|v-\tilde v\|, $$ while $$ \|Q_nV(v)-Q_nV(\tilde v)\|\le\delta\|v-\tilde v\|,\quad\delta<1, $$ where $Q_n$ is the orthoprojection onto a subspace of codimension $n$. With the aid of this result and of the results found in O. A. Ladyzhenskaya's paper “On the dynamical system generated by the Navier–Stokes equations” (J. Sov. Math., 3, No. 4 (1975)) one establishes the finite-dimensionality of the complete attractor for two-dimensional Navier–Stokes equations. The same holds for many other dissipative problems.
@article{ZNSL_1982_115_a11,
author = {O. A. Ladyzhenskaya},
title = {Finite-dimensionality of bounded invariant sets for {Navier{\textendash}Stokes} systems and other dissipative systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--155},
year = {1982},
volume = {115},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a11/}
}
TY - JOUR AU - O. A. Ladyzhenskaya TI - Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 137 EP - 155 VL - 115 UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a11/ LA - ru ID - ZNSL_1982_115_a11 ER -
O. A. Ladyzhenskaya. Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 137-155. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a11/