Action-angle variables for a multicomponent nonlinear Schrödinger equation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 126-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An auxiliary linear problem for the multicomponent nonlinear Schrödinger (NS) equation is the Dirac matrix system. For this system we give basic formulas for the direct and inverse problems of scattering theory. It is shown how the reduction reduces the invariance group of NS equation. The Riccati matrix equation leads to recurrent relations for the local densities preserving the motion integrals and allows us to transfer the relations defining the reduction to the data of the scattering. The action-angle variables are selected from the elements of the transition matrix after a special transformation from the invariance group and factorizations.
@article{ZNSL_1982_115_a10,
     author = {P. P. Kulish},
     title = {Action-angle variables for a~multicomponent nonlinear {Schr\"odinger} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--136},
     year = {1982},
     volume = {115},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a10/}
}
TY  - JOUR
AU  - P. P. Kulish
TI  - Action-angle variables for a multicomponent nonlinear Schrödinger equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 126
EP  - 136
VL  - 115
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a10/
LA  - ru
ID  - ZNSL_1982_115_a10
ER  - 
%0 Journal Article
%A P. P. Kulish
%T Action-angle variables for a multicomponent nonlinear Schrödinger equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 126-136
%V 115
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a10/
%G ru
%F ZNSL_1982_115_a10
P. P. Kulish. Action-angle variables for a multicomponent nonlinear Schrödinger equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 126-136. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a10/