Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 16-22

Voir la notice de l'article provenant de la source Math-Net.Ru

One considers the problem of the asymptotic behavior for $k\to+\infty$ of the solution of the Cauchy problem: $$ u_{tt}-u_{xx}+k^2u=0;\qquad u\mid_{t=0}=\theta(x),\quad u_t\mid_{t=0}=0\ (t>0\text{ -- fixed}). $$ Here $\theta(x)$ is the Heaviside function. In the neighborhood of the characteristics $x=\pm t$ function $u(x,t)$ oscillates exceptionally fast (the wavelength is of order $k^{-2}$). Near the $t$ axis the asymptotics of $u(x,t)$ contains the Fresnel integral.
@article{ZNSL_1982_115_a1,
     author = {V. M. Babich},
     title = {Asymptotic behavior relative to a~large parameter of the solution of the {Fok--Klein--Gordon} equation in the case of a~discontinuous initial condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 16
EP  - 22
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/
LA  - ru
ID  - ZNSL_1982_115_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 16-22
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/
%G ru
%F ZNSL_1982_115_a1
V. M. Babich. Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 16-22. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/