Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 16-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			One considers the problem of the asymptotic behavior for $k\to+\infty$ of the solution of the Cauchy problem:
$$
u_{tt}-u_{xx}+k^2u=0;\qquad u\mid_{t=0}=\theta(x),\quad u_t\mid_{t=0}=0\ (t>0\text{ -- fixed}).
$$
Here $\theta(x)$ is the Heaviside function. In the neighborhood of the characteristics $x=\pm t$ function $u(x,t)$ oscillates exceptionally fast (the wavelength is of order $k^{-2}$). Near the $t$ axis the asymptotics of $u(x,t)$ contains the Fresnel integral.
			
            
            
            
          
        
      @article{ZNSL_1982_115_a1,
     author = {V. M. Babich},
     title = {Asymptotic behavior relative to a~large parameter of the solution of the {Fok--Klein--Gordon} equation in the case of a~discontinuous initial condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/}
}
                      
                      
                    TY - JOUR AU - V. M. Babich TI - Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 16 EP - 22 VL - 115 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/ LA - ru ID - ZNSL_1982_115_a1 ER -
%0 Journal Article %A V. M. Babich %T Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition %J Zapiski Nauchnykh Seminarov POMI %D 1982 %P 16-22 %V 115 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/ %G ru %F ZNSL_1982_115_a1
V. M. Babich. Asymptotic behavior relative to a~large parameter of the solution of the Fok--Klein--Gordon equation in the case of a~discontinuous initial condition. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 16-22. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/