Asymptotic behavior relative to a large parameter of the solution of the Fok–Klein–Gordon equation in the case of a discontinuous initial condition
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 16-22
Cet article a éte moissonné depuis la source Math-Net.Ru
One considers the problem of the asymptotic behavior for $k\to+\infty$ of the solution of the Cauchy problem: $$ u_{tt}-u_{xx}+k^2u=0;\qquad u\mid_{t=0}=\theta(x),\quad u_t\mid_{t=0}=0\ (t>0\text{ -- fixed}). $$ Here $\theta(x)$ is the Heaviside function. In the neighborhood of the characteristics $x=\pm t$ function $u(x,t)$ oscillates exceptionally fast (the wavelength is of order $k^{-2}$). Near the $t$ axis the asymptotics of $u(x,t)$ contains the Fresnel integral.
@article{ZNSL_1982_115_a1,
author = {V. M. Babich},
title = {Asymptotic behavior relative to a~large parameter of the solution of the {Fok{\textendash}Klein{\textendash}Gordon} equation in the case of a~discontinuous initial condition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {16--22},
year = {1982},
volume = {115},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/}
}
TY - JOUR AU - V. M. Babich TI - Asymptotic behavior relative to a large parameter of the solution of the Fok–Klein–Gordon equation in the case of a discontinuous initial condition JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 16 EP - 22 VL - 115 UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/ LA - ru ID - ZNSL_1982_115_a1 ER -
%0 Journal Article %A V. M. Babich %T Asymptotic behavior relative to a large parameter of the solution of the Fok–Klein–Gordon equation in the case of a discontinuous initial condition %J Zapiski Nauchnykh Seminarov POMI %D 1982 %P 16-22 %V 115 %U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/ %G ru %F ZNSL_1982_115_a1
V. M. Babich. Asymptotic behavior relative to a large parameter of the solution of the Fok–Klein–Gordon equation in the case of a discontinuous initial condition. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 16-22. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a1/