Attractors of Navier–Stokes systems and of parabolic equations, and estimates for their dimensions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 3-15
Cet article a éte moissonné depuis la source Math-Net.Ru
One investigates the problem of the existence of an attractor $\mathfrak A$ of the semigroup $S_t$ generated by the solutions of the nonlinear nonstationary equations $$ \frac{\partial u}{\partial t}=A(u),\quad u\mid_{t=0}=u_0(t);\qquad S_tu_0\equiv u(t). $$ One proves a very general theorem on the existence of an attractor $\mathfrak A$ of the semigroup $S_t$ for $t\to\infty$. One gives examples of differential equations having attractors: a second-order quasilinear parabolic equation, a two-dimensional Navier–Stokes system, a monotone parabolic equation of any order. One proves a theorem on the finiteness of the Hausdorff dimension of the attractor $\mathfrak A$. One gives an estimate for the Hausdorff dimension of the attractor $\mathfrak A$ for a two-dimensional Navier–Stokes system.
@article{ZNSL_1982_115_a0,
author = {A. V. Babin and M. I. Vishik},
title = {Attractors of {Navier{\textendash}Stokes} systems and of parabolic equations, and estimates for their dimensions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {3--15},
year = {1982},
volume = {115},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a0/}
}
TY - JOUR AU - A. V. Babin AU - M. I. Vishik TI - Attractors of Navier–Stokes systems and of parabolic equations, and estimates for their dimensions JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 3 EP - 15 VL - 115 UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a0/ LA - ru ID - ZNSL_1982_115_a0 ER -
A. V. Babin; M. I. Vishik. Attractors of Navier–Stokes systems and of parabolic equations, and estimates for their dimensions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 3-15. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a0/