Attractors of Navier--Stokes systems and of parabolic equations, and estimates for their dimensions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

One investigates the problem of the existence of an attractor $\mathfrak A$ of the semigroup $S_t$ generated by the solutions of the nonlinear nonstationary equations $$ \frac{\partial u}{\partial t}=A(u),\quad u\mid_{t=0}=u_0(t);\qquad S_tu_0\equiv u(t). $$ One proves a very general theorem on the existence of an attractor $\mathfrak A$ of the semigroup $S_t$ for $t\to\infty$. One gives examples of differential equations having attractors: a second-order quasilinear parabolic equation, a two-dimensional Navier–Stokes system, a monotone parabolic equation of any order. One proves a theorem on the finiteness of the Hausdorff dimension of the attractor $\mathfrak A$. One gives an estimate for the Hausdorff dimension of the attractor $\mathfrak A$ for a two-dimensional Navier–Stokes system.
@article{ZNSL_1982_115_a0,
     author = {A. V. Babin and M. I. Vishik},
     title = {Attractors of {Navier--Stokes} systems and of parabolic equations, and estimates for their dimensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a0/}
}
TY  - JOUR
AU  - A. V. Babin
AU  - M. I. Vishik
TI  - Attractors of Navier--Stokes systems and of parabolic equations, and estimates for their dimensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 3
EP  - 15
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a0/
LA  - ru
ID  - ZNSL_1982_115_a0
ER  - 
%0 Journal Article
%A A. V. Babin
%A M. I. Vishik
%T Attractors of Navier--Stokes systems and of parabolic equations, and estimates for their dimensions
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 3-15
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a0/
%G ru
%F ZNSL_1982_115_a0
A. V. Babin; M. I. Vishik. Attractors of Navier--Stokes systems and of parabolic equations, and estimates for their dimensions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 3-15. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a0/