Invariants of linear groups generated by matrices with two nonunit eigenvalues
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 120-130

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the structure of the algebra of invariants of the commutant of a group generated by pseudoreflections is improved. In particular, it is shown that this algebra is a complete intersection. A series of counterexamples to Stanley's conjecture is constructed in dimension 4. Results supporting this conjecture for primitive groups of large dimension are given.
@article{ZNSL_1982_114_a9,
     author = {N. L. Gordeev},
     title = {Invariants of linear groups generated by matrices with two nonunit eigenvalues},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--130},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a9/}
}
TY  - JOUR
AU  - N. L. Gordeev
TI  - Invariants of linear groups generated by matrices with two nonunit eigenvalues
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 120
EP  - 130
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a9/
LA  - ru
ID  - ZNSL_1982_114_a9
ER  - 
%0 Journal Article
%A N. L. Gordeev
%T Invariants of linear groups generated by matrices with two nonunit eigenvalues
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 120-130
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a9/
%G ru
%F ZNSL_1982_114_a9
N. L. Gordeev. Invariants of linear groups generated by matrices with two nonunit eigenvalues. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 120-130. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a9/