Invariants of linear groups generated by matrices with two nonunit eigenvalues
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 120-130
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem on the structure of the algebra of invariants of the commutant of a group generated by pseudoreflections is improved. In particular, it is shown that this algebra is a complete intersection. A series of counterexamples to Stanley's conjecture is constructed in dimension 4. Results supporting this conjecture for primitive groups of large dimension are given.
@article{ZNSL_1982_114_a9,
author = {N. L. Gordeev},
title = {Invariants of linear groups generated by matrices with two nonunit eigenvalues},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--130},
publisher = {mathdoc},
volume = {114},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a9/}
}
N. L. Gordeev. Invariants of linear groups generated by matrices with two nonunit eigenvalues. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 120-130. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a9/