Net subgroups of Chevalley groups.~II. Gauss decomposition
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 62-76
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a continuation of RZhMat 1980, 5A439, where there was introduced the subgroup $\Gamma(\sigma)$ of the Chevalley group $G(\Phi, R)$ of type $\Phi$ over a commutative ring $R$ that corresponds to a net $\sigma$, i.e., to a set $\sigma=(\sigma_\alpha)$, $\alpha\in\Phi$, of ideals $\sigma_\alpha$ of $R$ such that $\sigma_\alpha\sigma_\beta\subseteq\sigma_{\alpha+\beta}$ whenever $\alpha,\beta,\alpha+\beta\in\Phi$. It is proved that if the ring $R$ is semilocal, then $\Gamma(\sigma)$ coincides with the group $\Gamma_0(\sigma)$ considered earlier in RZhMat 1976, 10A151; 1977, 10A301; 1978, 6A476. For this purpose there is constructed a decomposition of $\Gamma(\sigma)$ into a product of unipotent subgroups and a torus. Analogous results are obtained for sub-radical nets over an arbitrary commutative ring.
@article{ZNSL_1982_114_a6,
author = {N. A. Vavilov and E. B. Plotkin},
title = {Net subgroups of {Chevalley} {groups.~II.} {Gauss} decomposition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {62--76},
publisher = {mathdoc},
volume = {114},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a6/}
}
N. A. Vavilov; E. B. Plotkin. Net subgroups of Chevalley groups.~II. Gauss decomposition. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 62-76. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a6/