Determinants in net subgroups
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 37-49
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose $R$ is a commutative ring with 1, $\sigma=(\sigma_{ij})$ is a fixed $D$-net of ideals of $R$ of order $n$, and $G(\sigma)$ is the corresponding net subgroup of the general linear group $GL(n,R)$. There is constructed for $\sigma$ a homomorphism $\det_\sigma$ of the subgroup $G(\sigma)$ into a certain Abelian group $\Phi(\sigma)$. Let $I$ be the index set $\{1,\dots,n\}$. For each subset $\alpha\subseteq I$ let $\sigma(\alpha)=\sum\sigma_{ij}\sigma_{ji}$, where $i$, ranges over all indices in $\alpha$ and $j$ independently over the indices in the complement $I\backslash\alpha$ ($\sigma(I)$ is the zero ideal). Let $\det_\alpha(a)$ denote the principal minor of order $|\alpha|\leqslant n$ of the matrix $a\in G(\sigma)$ corresponding to the indices in $\alpha$, and let $\Phi(\sigma)$ be the Cartesian product of the multiplicative groups of the quotient rings $R/\sigma(\alpha)$ over all subsets $\alpha\subseteq I$. The homomorphism $\det_\sigma$ is defined as follows:
$$
\det_\sigma(a)=(\det_\alpha(a)\mod\sigma(\alpha))_\alpha\in\Phi(\sigma).
$$
It is proved that if $R$ is a semilocal commutative Bezout ring, then the kernel $\operatorname{Ker}\det_\sigma$ coincides with the subgroup $E(\sigma)$ generated by all transvections in $G(\sigma)$. For these $R$ is also defined $\operatorname{Im}\det_\sigma$.
@article{ZNSL_1982_114_a4,
author = {Z. I. Borevich and N. A. Vavilov},
title = {Determinants in net subgroups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--49},
publisher = {mathdoc},
volume = {114},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a4/}
}
Z. I. Borevich; N. A. Vavilov. Determinants in net subgroups. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 37-49. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a4/