Periodicity of residues of the number of finite labeled $T_0$-topologies
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 32-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T_0(n)$ be the number of labeled topologies on points satisfying the $T_0$ separation axiom. It is proved that for any prime $p$ the sequence of residue classes $T_0(n)\mod p$ is periodic with period length $p-1$.
@article{ZNSL_1982_114_a3,
     author = {Z. I. Borevich},
     title = {Periodicity of residues of the number of finite labeled $T_0$-topologies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--36},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a3/}
}
TY  - JOUR
AU  - Z. I. Borevich
TI  - Periodicity of residues of the number of finite labeled $T_0$-topologies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 32
EP  - 36
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a3/
LA  - ru
ID  - ZNSL_1982_114_a3
ER  - 
%0 Journal Article
%A Z. I. Borevich
%T Periodicity of residues of the number of finite labeled $T_0$-topologies
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 32-36
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a3/
%G ru
%F ZNSL_1982_114_a3
Z. I. Borevich. Periodicity of residues of the number of finite labeled $T_0$-topologies. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 32-36. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a3/