Convolution identities for tensors
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 211-214
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The concept of a convolution identity for tensors is introduced and it is proved that any convolution identity for tensors on a finite-dimensional space follows from a convolution identity equivalent to the classical Cayley–Hamilton identity.
			
            
            
            
          
        
      @article{ZNSL_1982_114_a20,
     author = {A. V. Yakovlev and A. M. Movsisyan},
     title = {Convolution identities for tensors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--214},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a20/}
}
                      
                      
                    A. V. Yakovlev; A. M. Movsisyan. Convolution identities for tensors. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 211-214. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a20/