Convolution identities for tensors
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 211-214
Cet article a éte moissonné depuis la source Math-Net.Ru
The concept of a convolution identity for tensors is introduced and it is proved that any convolution identity for tensors on a finite-dimensional space follows from a convolution identity equivalent to the classical Cayley–Hamilton identity.
@article{ZNSL_1982_114_a20,
author = {A. V. Yakovlev and A. M. Movsisyan},
title = {Convolution identities for tensors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {211--214},
year = {1982},
volume = {114},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a20/}
}
A. V. Yakovlev; A. M. Movsisyan. Convolution identities for tensors. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 211-214. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a20/