Structure of modules with invariant forms
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 28-31

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an Artinian Noetherian module over a ring with involution on which there is defined a nondegenerate antisymmetric invariant bilinear form decomposes into a direct sum of pairwise orthogonal summands, each of which is either indecomposable or a direct sum of two indecomposable modules. This theorem had been previously proved for such modules with unique division by 2.
@article{ZNSL_1982_114_a2,
     author = {E. A. Blagoveshchenskaya and A. V. Yakovlev},
     title = {Structure of modules with invariant forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--31},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a2/}
}
TY  - JOUR
AU  - E. A. Blagoveshchenskaya
AU  - A. V. Yakovlev
TI  - Structure of modules with invariant forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 28
EP  - 31
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a2/
LA  - ru
ID  - ZNSL_1982_114_a2
ER  - 
%0 Journal Article
%A E. A. Blagoveshchenskaya
%A A. V. Yakovlev
%T Structure of modules with invariant forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 28-31
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a2/
%G ru
%F ZNSL_1982_114_a2
E. A. Blagoveshchenskaya; A. V. Yakovlev. Structure of modules with invariant forms. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 28-31. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a2/