Structure of modules with invariant forms
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 28-31
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that an Artinian Noetherian module over a ring with involution on which there is defined a nondegenerate antisymmetric invariant bilinear form decomposes into a direct sum of pairwise orthogonal summands, each of which is either indecomposable or a direct sum of two indecomposable modules. This theorem had been previously proved for such modules with unique division by 2.
@article{ZNSL_1982_114_a2,
author = {E. A. Blagoveshchenskaya and A. V. Yakovlev},
title = {Structure of modules with invariant forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {28--31},
publisher = {mathdoc},
volume = {114},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a2/}
}
E. A. Blagoveshchenskaya; A. V. Yakovlev. Structure of modules with invariant forms. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 28-31. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a2/