Cancellation over affine varieties
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 187-195

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $X$ is a smooth affine curve over a field $F$ of characteristic $\ne\ell$, then the group $SK_1(X)/\ell SK_1(X)$ is isomorphic to a subgroup of the йtale cohomology group $H^3_{et}(X,\mu_e^{\otimes2})$ and if $F$ is algebraically closed, then $SK_1(X)$ is a uniquely divisible group. The following cancellation theorem is obtained from results about $SK_1$ for curves: If $X$ is a normal affine variety of dimension $n$ over a field $F$, and if $\operatorname{char}F>n$ and $c.d._\ell(F)\leqslant1$ for any prime $\ell\leqslant n$ then any stably trivial vector bundle of rank $n$ over $X$ is trivial.
@article{ZNSL_1982_114_a17,
     author = {A. A. Suslin},
     title = {Cancellation over affine varieties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--195},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a17/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - Cancellation over affine varieties
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 187
EP  - 195
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a17/
LA  - ru
ID  - ZNSL_1982_114_a17
ER  - 
%0 Journal Article
%A A. A. Suslin
%T Cancellation over affine varieties
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 187-195
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a17/
%G ru
%F ZNSL_1982_114_a17
A. A. Suslin. Cancellation over affine varieties. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 187-195. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a17/