Cancellation over affine varieties
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 187-195
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that if $X$ is a smooth affine curve over a field $F$ of characteristic $\ne\ell$, then the group $SK_1(X)/\ell SK_1(X)$ is isomorphic to a subgroup of the йtale cohomology group $H^3_{et}(X,\mu_e^{\otimes2})$ and if $F$ is algebraically closed, then $SK_1(X)$ is a uniquely divisible group. The following cancellation theorem is obtained from results about $SK_1$ for curves: If $X$ is a normal affine variety of dimension $n$ over a field $F$, and if $\operatorname{char}F>n$ and $c.d._\ell(F)\leqslant1$ for any prime $\ell\leqslant n$ then any stably trivial vector bundle of rank $n$ over $X$ is trivial.
			
            
            
            
          
        
      @article{ZNSL_1982_114_a17,
     author = {A. A. Suslin},
     title = {Cancellation over affine varieties},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--195},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a17/}
}
                      
                      
                    A. A. Suslin. Cancellation over affine varieties. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 187-195. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a17/