Some recurrence relations in finite topologies
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 174-179

Voir la notice de l'article provenant de la source Math-Net.Ru

In a number of papers (see, e.g., RZhMat, 1977, 11B586) there is given for the number $T_0(n)$ of labeled topologies on $n$ points satisfying the $T_0$ separation axiom the formula $$ T_0(n)=\sum\dfrac{n!}{p_1!\dots p_k!}V(p_1,\dots,p_k), $$ where the summation extends over all ordered sets $(p_1,\dots,p_k)$ of natural numbers such that $p_1+\dots+p_k=n$. In the present paper there is found a relation for calculating, when $n\geqslant2$, the sum of all terms in this formula for which $p_2=1$ in terms of the values $V(q_1,\dots,q_t)$ with $q_1+\dots+q_t\leqslant n-2$. This permits the determination (with the aid of a computer) of the new value $$ T_0(12)=414\,864\,951\,055\,853\,499. $$
@article{ZNSL_1982_114_a15,
     author = {V. I. Rodionov},
     title = {Some recurrence relations in finite topologies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--179},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a15/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - Some recurrence relations in finite topologies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 174
EP  - 179
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a15/
LA  - ru
ID  - ZNSL_1982_114_a15
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T Some recurrence relations in finite topologies
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 174-179
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a15/
%G ru
%F ZNSL_1982_114_a15
V. I. Rodionov. Some recurrence relations in finite topologies. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 174-179. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a15/