Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 148-149
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a minimal generating system of the lattice of all subspaces of a finite-dimensional vector space over a finite field of $q$ elements contains at most $\max(q+3)$ elements. This bound does not depend on the dimension of the space.
@article{ZNSL_1982_114_a12,
author = {A. A. Kravchenko},
title = {Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--149},
year = {1982},
volume = {114},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a12/}
}
A. A. Kravchenko. Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 148-149. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a12/