Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 148-149

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a minimal generating system of the lattice of all subspaces of a finite-dimensional vector space over a finite field of $q$ elements contains at most $\max(q+3)$ elements. This bound does not depend on the dimension of the space.
@article{ZNSL_1982_114_a12,
     author = {A. A. Kravchenko},
     title = {Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--149},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a12/}
}
TY  - JOUR
AU  - A. A. Kravchenko
TI  - Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 148
EP  - 149
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a12/
LA  - ru
ID  - ZNSL_1982_114_a12
ER  - 
%0 Journal Article
%A A. A. Kravchenko
%T Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 148-149
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a12/
%G ru
%F ZNSL_1982_114_a12
A. A. Kravchenko. Minimal number of generators of the lattice of subspaces of a finite-dimensional linear space. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 148-149. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a12/