Identities of the algebra of triangular matrices
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 7-27
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper deals with the ideals of identities of certain associative algebras over a field $F$ of characteristic zero. An algebra $W$ of matrices of the form$\begin{pmatrix}
\lambda  \mu
\\
0  \omega
\end{pmatrix}$, $\lambda\in\Lambda$, $\omega\in\Omega$, $\mu\in M$, where $\Lambda$ and $\Omega$, are $F$-algebras with unity and $M$ is a $(\Lambda,\Omega)$-bimodule, is considered. Under certain natural restrictions on $M$ one obtains the equality of ideals of identities $T(W)=T(\Lambda)T(\Omega)$, if $[[x_1,x_2],x_3[x_4,x_5]]\in T(\Omega)$.
			
            
            
            
          
        
      @article{ZNSL_1982_114_a1,
     author = {A. Sh. Abakarov},
     title = {Identities of the algebra of triangular matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--27},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/}
}
                      
                      
                    A. Sh. Abakarov. Identities of the algebra of triangular matrices. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 7-27. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/