Identities of the algebra of triangular matrices
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 7-27
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper deals with the ideals of identities of certain associative algebras over a field $F$ of characteristic zero. An algebra $W$ of matrices of the form$\begin{pmatrix} \lambda & \mu \\ 0 & \omega \end{pmatrix}$, $\lambda\in\Lambda$, $\omega\in\Omega$, $\mu\in M$, where $\Lambda$ and $\Omega$, are $F$-algebras with unity and $M$ is a $(\Lambda,\Omega)$-bimodule, is considered. Under certain natural restrictions on $M$ one obtains the equality of ideals of identities $T(W)=T(\Lambda)T(\Omega)$, if $[[x_1,x_2],x_3[x_4,x_5]]\in T(\Omega)$.
@article{ZNSL_1982_114_a1,
author = {A. Sh. Abakarov},
title = {Identities of the algebra of triangular matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--27},
year = {1982},
volume = {114},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/}
}
A. Sh. Abakarov. Identities of the algebra of triangular matrices. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 7-27. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/