Identities of the algebra of triangular matrices
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 7-27

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the ideals of identities of certain associative algebras over a field $F$ of characteristic zero. An algebra $W$ of matrices of the form$\begin{pmatrix} \lambda \mu \\ 0 \omega \end{pmatrix}$, $\lambda\in\Lambda$, $\omega\in\Omega$, $\mu\in M$, where $\Lambda$ and $\Omega$, are $F$-algebras with unity and $M$ is a $(\Lambda,\Omega)$-bimodule, is considered. Under certain natural restrictions on $M$ one obtains the equality of ideals of identities $T(W)=T(\Lambda)T(\Omega)$, if $[[x_1,x_2],x_3[x_4,x_5]]\in T(\Omega)$.
@article{ZNSL_1982_114_a1,
     author = {A. Sh. Abakarov},
     title = {Identities of the algebra of triangular matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--27},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/}
}
TY  - JOUR
AU  - A. Sh. Abakarov
TI  - Identities of the algebra of triangular matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 7
EP  - 27
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/
LA  - ru
ID  - ZNSL_1982_114_a1
ER  - 
%0 Journal Article
%A A. Sh. Abakarov
%T Identities of the algebra of triangular matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 7-27
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/
%G ru
%F ZNSL_1982_114_a1
A. Sh. Abakarov. Identities of the algebra of triangular matrices. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 7-27. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a1/