The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 136-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In terms of functions $f^*$ and $f^{**}$ the necessary and sufficient conditions are given for the validity of the inclusion $\mathsf E(N_f|\mathscr T)\subset N_f$ where $f$ is an arbitrary element of $L^1(0,1)$, $N_f$, $f$, $\mathscr T$ is the minimal rearrangement invariant ideal of $L^1(0,1)$ containing $f$, $\mathscr T$ is a partition of the segment [0,1] by points of a sequence $t_n\downarrow0$ and $\mathsf E(\cdot|\mathscr T)$ is the conditional expectation operator.
@article{ZNSL_1982_107_a7,
     author = {A. A. Mekler},
     title = {The countable partition averaging operator with respect to a~minimal rearrangement invariant ideal of the space $L^1(0,1)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--149},
     year = {1982},
     volume = {107},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/}
}
TY  - JOUR
AU  - A. A. Mekler
TI  - The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 136
EP  - 149
VL  - 107
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/
LA  - ru
ID  - ZNSL_1982_107_a7
ER  - 
%0 Journal Article
%A A. A. Mekler
%T The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 136-149
%V 107
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/
%G ru
%F ZNSL_1982_107_a7
A. A. Mekler. The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 136-149. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/