The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 136-149
Cet article a éte moissonné depuis la source Math-Net.Ru
In terms of functions $f^*$ and $f^{**}$ the necessary and sufficient conditions are given for the validity of the inclusion $\mathsf E(N_f|\mathscr T)\subset N_f$ where $f$ is an arbitrary element of $L^1(0,1)$, $N_f$, $f$, $\mathscr T$ is the minimal rearrangement invariant ideal of $L^1(0,1)$ containing $f$, $\mathscr T$ is a partition of the segment [0,1] by points of a sequence $t_n\downarrow0$ and $\mathsf E(\cdot|\mathscr T)$ is the conditional expectation operator.
@article{ZNSL_1982_107_a7,
author = {A. A. Mekler},
title = {The countable partition averaging operator with respect to a~minimal rearrangement invariant ideal of the space $L^1(0,1)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--149},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/}
}
TY - JOUR AU - A. A. Mekler TI - The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 136 EP - 149 VL - 107 UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/ LA - ru ID - ZNSL_1982_107_a7 ER -
%0 Journal Article %A A. A. Mekler %T The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$ %J Zapiski Nauchnykh Seminarov POMI %D 1982 %P 136-149 %V 107 %U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/ %G ru %F ZNSL_1982_107_a7
A. A. Mekler. The countable partition averaging operator with respect to a minimal rearrangement invariant ideal of the space $L^1(0,1)$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 136-149. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a7/