Sets of simply-invariance
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 104-135
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X$ be a space of smooth functions on the unit circle $\mathbb T$. Suppose that the operator of multiplication by $z$ is invertible on $X$. A closed set $E$, $E\subset\mathbb T$, is (by definition) the set of simply-invariance for the space $X$ if there exists a function $f$, $f\in X$, such that $f|_E\equiv0$ and $z^{-1}\not\in\operatorname{span}\{z^nf:n\ge0\}$, It is proved that the class of sets of simply-invariance for the spaces $C^n$, $W_p^n$ ($p<\infty$), $\lambda_\omega^n$, coincides with the class of sets of zero Lebesgue measure, for the space $C^\infty$, with the class of Carleson sets, for the space $\Lambda_\omega^n$ with the class of all nowhere dense closed sets. Some related problems are also considered.
@article{ZNSL_1982_107_a6,
     author = {N. G. Makarov},
     title = {Sets of simply-invariance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--135},
     year = {1982},
     volume = {107},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a6/}
}
TY  - JOUR
AU  - N. G. Makarov
TI  - Sets of simply-invariance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 104
EP  - 135
VL  - 107
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a6/
LA  - ru
ID  - ZNSL_1982_107_a6
ER  - 
%0 Journal Article
%A N. G. Makarov
%T Sets of simply-invariance
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 104-135
%V 107
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a6/
%G ru
%F ZNSL_1982_107_a6
N. G. Makarov. Sets of simply-invariance. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 104-135. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a6/