Rearrangements, arrangements of sings and convergence of sequences of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 46-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $(S,\Sigma,\mu)$ be a non-atomic measure space and $T_n$, $n\ge1$, be a sequence of integral operators $$ (T_nf)(x)=\int_S f(u)K_n(x,u)\,d\mu(u),\quad f\in L^1,\quad n\ge1, $$ with measurable and bounded kernels $K_n$. We prove that under some addtitional assumptions any function $f\in L^p$, $1\le p<\infty$, can be rearranged so that for the rearranged function $g$ the sequence $T_ng$ is convergent in the space $L^p$. As a corollary we obtain that any function $f\in L^p$, $1\le p<2$, can be rearranged so that the Fourier series with respect to any given complete orthonormal (in $L^2$) family of bounded functions is convergent in the space $L^p$. Similar questions are studied for arrangements of signs and in the case of the a.e. convergence and integrability of the maximal operator $T^*f=\sup_n|T_nf|$.
@article{ZNSL_1982_107_a3,
     author = {A. B. Gulisashvili},
     title = {Rearrangements, arrangements of sings and convergence of sequences of operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--70},
     year = {1982},
     volume = {107},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a3/}
}
TY  - JOUR
AU  - A. B. Gulisashvili
TI  - Rearrangements, arrangements of sings and convergence of sequences of operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 46
EP  - 70
VL  - 107
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a3/
LA  - ru
ID  - ZNSL_1982_107_a3
ER  - 
%0 Journal Article
%A A. B. Gulisashvili
%T Rearrangements, arrangements of sings and convergence of sequences of operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 46-70
%V 107
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a3/
%G ru
%F ZNSL_1982_107_a3
A. B. Gulisashvili. Rearrangements, arrangements of sings and convergence of sequences of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 46-70. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a3/