On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 213-221
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of the paper is the estimate
$$
\|f(B)-f(A)\|\le c\biggl[\log\biggl(1+\frac1{\|B-A\|}\biggr)+7\biggr]^2\|B-A\|,
$$
obtained for Lipschitz functions, with some conditions of the growth of the functions at infinity.
			
            
            
            
          
        
      @article{ZNSL_1982_107_a17,
     author = {J. B. Farforovskaja},
     title = {On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--221},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/}
}
                      
                      
                    TY - JOUR AU - J. B. Farforovskaja TI - On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 213 EP - 221 VL - 107 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/ LA - ru ID - ZNSL_1982_107_a17 ER -
J. B. Farforovskaja. On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 213-221. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/