On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 213-221
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result of the paper is the estimate $$ \|f(B)-f(A)\|\le c\biggl[\log\biggl(1+\frac1{\|B-A\|}\biggr)+7\biggr]^2\|B-A\|, $$ obtained for Lipschitz functions, with some conditions of the growth of the functions at infinity.
@article{ZNSL_1982_107_a17,
author = {J. B. Farforovskaja},
title = {On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {213--221},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/}
}
TY - JOUR AU - J. B. Farforovskaja TI - On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory JO - Zapiski Nauchnykh Seminarov POMI PY - 1982 SP - 213 EP - 221 VL - 107 UR - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/ LA - ru ID - ZNSL_1982_107_a17 ER -
J. B. Farforovskaja. On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 213-221. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/