On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 213-221

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is the estimate $$ \|f(B)-f(A)\|\le c\biggl[\log\biggl(1+\frac1{\|B-A\|}\biggr)+7\biggr]^2\|B-A\|, $$ obtained for Lipschitz functions, with some conditions of the growth of the functions at infinity.
@article{ZNSL_1982_107_a17,
     author = {J. B. Farforovskaja},
     title = {On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--221},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/}
}
TY  - JOUR
AU  - J. B. Farforovskaja
TI  - On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 213
EP  - 221
VL  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/
LA  - ru
ID  - ZNSL_1982_107_a17
ER  - 
%0 Journal Article
%A J. B. Farforovskaja
%T On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 213-221
%V 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/
%G ru
%F ZNSL_1982_107_a17
J. B. Farforovskaja. On the difference $f(B)-f(A)$ for unbounded self-adjoint operators in the perturbation theory. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 213-221. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a17/