Free interpolation of bounded harmonic functions by analytic ones
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L^p$ (resp. $H^p$) denote the space of harmonic (analytic) functions in the unit disk $\mathbb D$ with the norm $\|f\|_p=\lim_{r\to1-2}(\int_{\mathbb T}|f(re^{it}|^p\,dt)^{1/p}$, $1\le p\le\infty$. A complete characterization of subsets $E$, $E\subset\mathbb D$, satisfying $L^\infty|_E=H^\infty|_E$ is given. There are some results about sets $E$, $E\subset\mathbb D$ with $L^p|_E=H^p|_E$, $1\le p\infty$.
@article{ZNSL_1982_107_a16,
     author = {V. A. Tolokonnikov},
     title = {Free interpolation of bounded harmonic functions by analytic ones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--212},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/}
}
TY  - JOUR
AU  - V. A. Tolokonnikov
TI  - Free interpolation of bounded harmonic functions by analytic ones
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 209
EP  - 212
VL  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/
LA  - ru
ID  - ZNSL_1982_107_a16
ER  - 
%0 Journal Article
%A V. A. Tolokonnikov
%T Free interpolation of bounded harmonic functions by analytic ones
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 209-212
%V 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/
%G ru
%F ZNSL_1982_107_a16
V. A. Tolokonnikov. Free interpolation of bounded harmonic functions by analytic ones. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/