Free interpolation of bounded harmonic functions by analytic ones
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $L^p$ (resp. $H^p$) denote the space of harmonic (analytic) functions in the unit disk $\mathbb D$ with the norm $\|f\|_p=\lim_{r\to1-2}(\int_{\mathbb T}|f(re^{it}|^p\,dt)^{1/p}$, $1\le p\le\infty$. A complete characterization of subsets $E$, $E\subset\mathbb D$, satisfying $L^\infty|_E=H^\infty|_E$ is given. There are some results about sets $E$, $E\subset\mathbb D$ with $L^p|_E=H^p|_E$, $1\le p<\infty$.
@article{ZNSL_1982_107_a16,
     author = {V. A. Tolokonnikov},
     title = {Free interpolation of bounded harmonic functions by analytic ones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--212},
     year = {1982},
     volume = {107},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/}
}
TY  - JOUR
AU  - V. A. Tolokonnikov
TI  - Free interpolation of bounded harmonic functions by analytic ones
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 209
EP  - 212
VL  - 107
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/
LA  - ru
ID  - ZNSL_1982_107_a16
ER  - 
%0 Journal Article
%A V. A. Tolokonnikov
%T Free interpolation of bounded harmonic functions by analytic ones
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 209-212
%V 107
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/
%G ru
%F ZNSL_1982_107_a16
V. A. Tolokonnikov. Free interpolation of bounded harmonic functions by analytic ones. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/