Free interpolation of bounded harmonic functions by analytic ones
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $L^p$ (resp. $H^p$) denote the space of harmonic (analytic) functions in the unit disk $\mathbb D$ with the norm $\|f\|_p=\lim_{r\to1-2}(\int_{\mathbb T}|f(re^{it}|^p\,dt)^{1/p}$, $1\le p\le\infty$. A complete characterization of subsets $E$, $E\subset\mathbb D$, satisfying $L^\infty|_E=H^\infty|_E$ is given.
There are some results about sets $E$, $E\subset\mathbb D$ with $L^p|_E=H^p|_E$, $1\le p\infty$.
			
            
            
            
          
        
      @article{ZNSL_1982_107_a16,
     author = {V. A. Tolokonnikov},
     title = {Free interpolation of bounded harmonic functions by analytic ones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--212},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/}
}
                      
                      
                    V. A. Tolokonnikov. Free interpolation of bounded harmonic functions by analytic ones. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/