Free interpolation of bounded harmonic functions by analytic ones
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $L^p$ (resp. $H^p$) denote the space of harmonic (analytic) functions in the unit disk $\mathbb D$ with the norm $\|f\|_p=\lim_{r\to1-2}(\int_{\mathbb T}|f(re^{it}|^p\,dt)^{1/p}$, $1\le p\le\infty$. A complete characterization of subsets $E$, $E\subset\mathbb D$, satisfying $L^\infty|_E=H^\infty|_E$ is given. There are some results about sets $E$, $E\subset\mathbb D$ with $L^p|_E=H^p|_E$, $1\le p<\infty$.
@article{ZNSL_1982_107_a16,
author = {V. A. Tolokonnikov},
title = {Free interpolation of bounded harmonic functions by analytic ones},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--212},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/}
}
V. A. Tolokonnikov. Free interpolation of bounded harmonic functions by analytic ones. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 209-212. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a16/