Existence of invariant subspaces for operators with non-symmetrical growth of resolvent
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 204-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Existence of invariant and hyperinvariant subspaces is obtained for some new classes of bounded operators in a Banach space. The operators under consideration have “thin” spectrum (in the most interesting cases the spectrum is a single point) and a certain nonsymmetry in the growth of resolvent. For example, one can take $T$ such that $\sigma(T)=\{0\}$ and for some $\beta\in(0,\pi]$, \begin{gather} \|(\lambda J-T)^{-1}\|\le c|\lambda|^{-n},\quad|\arg\lambda|>\beta;\\ \quad\|(\lambda J-T)^{-1}\|\le c\exp|\lambda|^{-\pi/2\beta}, \quad|\arg\lambda|\le\beta. \end{gather} Hyperinvariant subspaces have the form $\operatorname{Ker}f(T)$, where $f(T)$ is defined in a special functional calculus.
@article{ZNSL_1982_107_a15,
     author = {B. M. Solomyak},
     title = {Existence of invariant subspaces for operators with non-symmetrical growth of resolvent},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {204--208},
     year = {1982},
     volume = {107},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a15/}
}
TY  - JOUR
AU  - B. M. Solomyak
TI  - Existence of invariant subspaces for operators with non-symmetrical growth of resolvent
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 204
EP  - 208
VL  - 107
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a15/
LA  - ru
ID  - ZNSL_1982_107_a15
ER  - 
%0 Journal Article
%A B. M. Solomyak
%T Existence of invariant subspaces for operators with non-symmetrical growth of resolvent
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 204-208
%V 107
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a15/
%G ru
%F ZNSL_1982_107_a15
B. M. Solomyak. Existence of invariant subspaces for operators with non-symmetrical growth of resolvent. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 204-208. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a15/