Existence of invariant subspaces for operators with non-symmetrical growth of resolvent
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 204-208
Cet article a éte moissonné depuis la source Math-Net.Ru
Existence of invariant and hyperinvariant subspaces is obtained for some new classes of bounded operators in a Banach space. The operators under consideration have “thin” spectrum (in the most interesting cases the spectrum is a single point) and a certain nonsymmetry in the growth of resolvent. For example, one can take $T$ such that $\sigma(T)=\{0\}$ and for some $\beta\in(0,\pi]$, \begin{gather} \|(\lambda J-T)^{-1}\|\le c|\lambda|^{-n},\quad|\arg\lambda|>\beta;\\ \quad\|(\lambda J-T)^{-1}\|\le c\exp|\lambda|^{-\pi/2\beta}, \quad|\arg\lambda|\le\beta. \end{gather} Hyperinvariant subspaces have the form $\operatorname{Ker}f(T)$, where $f(T)$ is defined in a special functional calculus.
@article{ZNSL_1982_107_a15,
author = {B. M. Solomyak},
title = {Existence of invariant subspaces for operators with non-symmetrical growth of resolvent},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {204--208},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a15/}
}
B. M. Solomyak. Existence of invariant subspaces for operators with non-symmetrical growth of resolvent. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 204-208. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a15/