On isometries in vector-valued $L^p$-spaces
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 198-203
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The results by A. I. Plotkin on the equimeasurability of a function and its $L^p$-isometric image are extended to the isometries in some vector-valued $L^p$-spaces. The isometries of $L^p(X;C(K))$ are characterized.
			
            
            
            
          
        
      @article{ZNSL_1982_107_a14,
     author = {A. L. Koldobskii},
     title = {On isometries in vector-valued $L^p$-spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--203},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a14/}
}
                      
                      
                    A. L. Koldobskii. On isometries in vector-valued $L^p$-spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 198-203. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a14/