On isometries in vector-valued $L^p$-spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 198-203
Cet article a éte moissonné depuis la source Math-Net.Ru
The results by A. I. Plotkin on the equimeasurability of a function and its $L^p$-isometric image are extended to the isometries in some vector-valued $L^p$-spaces. The isometries of $L^p(X;C(K))$ are characterized.
@article{ZNSL_1982_107_a14,
author = {A. L. Koldobskii},
title = {On isometries in vector-valued $L^p$-spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {198--203},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a14/}
}
A. L. Koldobskii. On isometries in vector-valued $L^p$-spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 198-203. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a14/