Zero sets for functions from $\Lambda_\omega$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 178-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following result is proved: THEOREM: {\it Let $S$ be an inner function, $\operatorname{spec}S\subset E$, $E\subset\operatorname{clos}\mathbb D$. Suppose $E$ satisfies $$ \sum_{\alpha\in\mathbb D\cap E}(1-|\alpha|)<\infty,\quad\int_{\partial\mathbb D}\log\omega(\operatorname{dist}(z,E))|dz|>-\infty, $$ $\omega$ being a continuity modulus. Then there exists a function $\Lambda_\omega$ such that $f^{-1}(0)\in E$ и $f|_S\in\Lambda_\omega$}.
@article{ZNSL_1982_107_a11,
     author = {N. A. Shirokov},
     title = {Zero sets for functions from $\Lambda_\omega$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--188},
     year = {1982},
     volume = {107},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a11/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Zero sets for functions from $\Lambda_\omega$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 178
EP  - 188
VL  - 107
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a11/
LA  - ru
ID  - ZNSL_1982_107_a11
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Zero sets for functions from $\Lambda_\omega$
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 178-188
%V 107
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a11/
%G ru
%F ZNSL_1982_107_a11
N. A. Shirokov. Zero sets for functions from $\Lambda_\omega$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 178-188. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a11/