Zero sets for functions from $\Lambda_\omega$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 178-188
Cet article a éte moissonné depuis la source Math-Net.Ru
The following result is proved: THEOREM: {\it Let $S$ be an inner function, $\operatorname{spec}S\subset E$, $E\subset\operatorname{clos}\mathbb D$. Suppose $E$ satisfies $$ \sum_{\alpha\in\mathbb D\cap E}(1-|\alpha|)<\infty,\quad\int_{\partial\mathbb D}\log\omega(\operatorname{dist}(z,E))|dz|>-\infty, $$ $\omega$ being a continuity modulus. Then there exists a function $\Lambda_\omega$ such that $f^{-1}(0)\in E$ и $f|_S\in\Lambda_\omega$}.
@article{ZNSL_1982_107_a11,
author = {N. A. Shirokov},
title = {Zero sets for functions from $\Lambda_\omega$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--188},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a11/}
}
N. A. Shirokov. Zero sets for functions from $\Lambda_\omega$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 178-188. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a11/