Uniqueness theorems and essentially self-adjoint operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 169-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with an extension of well-known Nussbaum's and Kelson's theorems. It is shown that sets of uniqueness for the boundary values of functions, smooth in the closed upper half-plane and holomorphic in its interior, are closely related with tests of essentially self-adjointness for semi-bounded symmetric operators in Hilbert space.
@article{ZNSL_1982_107_a10,
     author = {S. V. Khrushchev},
     title = {Uniqueness theorems and essentially self-adjoint operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--177},
     year = {1982},
     volume = {107},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a10/}
}
TY  - JOUR
AU  - S. V. Khrushchev
TI  - Uniqueness theorems and essentially self-adjoint operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 169
EP  - 177
VL  - 107
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a10/
LA  - ru
ID  - ZNSL_1982_107_a10
ER  - 
%0 Journal Article
%A S. V. Khrushchev
%T Uniqueness theorems and essentially self-adjoint operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 169-177
%V 107
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a10/
%G ru
%F ZNSL_1982_107_a10
S. V. Khrushchev. Uniqueness theorems and essentially self-adjoint operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 169-177. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a10/