On Taylor coefficients and $L_p$-continuity moduli of Blaschke products
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 27-35
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $$ B=\prod_{k\geq1}b_{z_k},\quad b_{z_k}\overset{\text{def}}=\frac{|z_k|}{z_k} \frac{z_k-z}{1-\bar z_k z},\quad |z_k|<1, $$ be a Blaschke product, let $\widehat{B}(z)$ denote its $k$-th Taylor coefficient. Suppose $\{z_k\}$ splits into a finite union of sequences $\{\xi_k\}$ satisfying $$ \sup_{k\geq1}\frac{1-|\xi_{k+1}|}{1-|\xi_{k}|}<1. $$ The following assertions are proved to be equivalent: 1. $\{z_k\}_{k\geq1}\in(\omega N)$; 2. $\widehat{B}(k)=O(1/k)$, $k\to\infty$; 3. $\sum_{k\geq n}|\widehat{B}|^2=O(n^{-1})$; 4. $B\in\operatorname{Lip}(1/p,L^p)$ for some $p$, $1
.
@article{ZNSL_1982_107_a1,
author = {I. \'E. Verbitskii},
title = {On {Taylor} coefficients and $L_p$-continuity moduli of {Blaschke} products},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--35},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a1/}
}
I. É. Verbitskii. On Taylor coefficients and $L_p$-continuity moduli of Blaschke products. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 27-35. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a1/