The non-classical interpolation by analytic functions smooth up to the boundary
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 7-26

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a closed subset of the unit circle $\mathbb T$. Necessary and sufficient conditions are found for validity of inclusion $X|_E\subset Y|_E$, $X$ being a Carleman class on $\mathbb T$ and $Y$ being an analytic Carleman or Hölder class.
@article{ZNSL_1982_107_a0,
     author = {G. Ya. Bomash},
     title = {The non-classical interpolation by analytic functions smooth up to the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--26},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a0/}
}
TY  - JOUR
AU  - G. Ya. Bomash
TI  - The non-classical interpolation by analytic functions smooth up to the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 7
EP  - 26
VL  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a0/
LA  - ru
ID  - ZNSL_1982_107_a0
ER  - 
%0 Journal Article
%A G. Ya. Bomash
%T The non-classical interpolation by analytic functions smooth up to the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 7-26
%V 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a0/
%G ru
%F ZNSL_1982_107_a0
G. Ya. Bomash. The non-classical interpolation by analytic functions smooth up to the boundary. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 7-26. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a0/