On a perturbation of the poles of scattering matrix for varying baundary condition
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 12, Tome 117 (1981), pp. 183-191
Voir la notice de l'article provenant de la source Math-Net.Ru
It is considered the behavior of the poles $z_n(\varepsilon)$, $n=1,2,\dots$ of scattering matrix of the operator $l_\varepsilon u=-\Delta u(x), x\in\Omega, \displaystyle\varepsilon\frac{\partial u}{\partial n}+\sigma(x)u|_{\partial\Omega}$ for $\varepsilon\to0$. It is proved that $|z_n(\varepsilon)-z_n|=O(\varepsilon^{\frac1{2q_n}})$ where $q_n$ is the order of pole $z_n$ of scattering matrix of the operator $l_0u=-\Delta u, u|_{\partial\Omega}=0$.
@article{ZNSL_1981_117_a12,
author = {S. V. Petras},
title = {On a perturbation of the poles of scattering matrix for varying baundary condition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--191},
publisher = {mathdoc},
volume = {117},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_117_a12/}
}
S. V. Petras. On a perturbation of the poles of scattering matrix for varying baundary condition. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 12, Tome 117 (1981), pp. 183-191. http://geodesic.mathdoc.fr/item/ZNSL_1981_117_a12/