Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 199-203

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a compact subset of the complex plane $\mathbb C$, having positive planar Lebesgue measure. Then there exists a nonconstant function $f$, analytic in the domain $\mathbb C\setminus E$, satisfying the Lipschitz condition \begin{equation} |f(z_1)-f(z_2)|\le\operatorname{const}|z_1-z_2|,\qquad z_j\in\mathbb C\setminus E,\quad j=1,2. \end{equation} In this note there is given a simple proof of the theorem of N. X. Uy, formulated above. It is also proved that each bounded measurable function $\alpha$, defined on the set $E$, can be revised on a set of small ebesgue measure so that for the function $\varphi$ obtained the Cauchy integral $$ f(z)=\iint_E\frac{\varphi(t)}{t-z}\,dm_2(t) $$ satisfies condition (1).
@article{ZNSL_1981_113_a8,
     author = {S. V. Khrushchev},
     title = {Simple proof of a~theorem on removable singularities of analytic functions satisfying {a~Lipschitz} condition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--203},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/}
}
TY  - JOUR
AU  - S. V. Khrushchev
TI  - Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 199
EP  - 203
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/
LA  - ru
ID  - ZNSL_1981_113_a8
ER  - 
%0 Journal Article
%A S. V. Khrushchev
%T Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 199-203
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/
%G ru
%F ZNSL_1981_113_a8
S. V. Khrushchev. Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 199-203. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/