Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 199-203
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be a compact subset of the complex plane $\mathbb C$, having positive planar Lebesgue measure. Then there exists a nonconstant function $f$, analytic in the domain $\mathbb C\setminus E$, satisfying the Lipschitz condition
\begin{equation}
|f(z_1)-f(z_2)|\le\operatorname{const}|z_1-z_2|,\qquad z_j\in\mathbb C\setminus E,\quad j=1,2. \end{equation}
In this note there is given a simple proof of the theorem of N. X. Uy, formulated above. It is also proved that each bounded measurable function $\alpha$, defined on the set $E$, can be revised on a set of small ebesgue measure so that for the function $\varphi$ obtained the Cauchy integral
$$
f(z)=\iint_E\frac{\varphi(t)}{t-z}\,dm_2(t)
$$
satisfies condition (1).
@article{ZNSL_1981_113_a8,
author = {S. V. Khrushchev},
title = {Simple proof of a~theorem on removable singularities of analytic functions satisfying {a~Lipschitz} condition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--203},
publisher = {mathdoc},
volume = {113},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/}
}
TY - JOUR AU - S. V. Khrushchev TI - Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition JO - Zapiski Nauchnykh Seminarov POMI PY - 1981 SP - 199 EP - 203 VL - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/ LA - ru ID - ZNSL_1981_113_a8 ER -
%0 Journal Article %A S. V. Khrushchev %T Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition %J Zapiski Nauchnykh Seminarov POMI %D 1981 %P 199-203 %V 113 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/ %G ru %F ZNSL_1981_113_a8
S. V. Khrushchev. Simple proof of a~theorem on removable singularities of analytic functions satisfying a~Lipschitz condition. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 199-203. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a8/