Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a~problem of S.-Nagy
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 178-198

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E_1,E_2$ be Hilbert spaces, $H^\infty(E_1,E_2)$ be the space of functions, bounded and analytic in the disk $\mathbb D$, with values in the space of bounded linear operators from $E_1$ to $E_2$. Estimates are investigated for a solution of the problem of S.-Nagy of finding a left inverse element for a function $F$, $F\in H^\infty(E_1,E_2)$. For $\dim E_1=1$ this problem is a generalization of the corona problem. Let $C_n(\delta)=\sup\{\|G\|_\infty\colon F\in H^\infty(E_1,E_2),\,\dim E_1=n,\,\|F\|_\infty\le1,\,\|F(z)a\|_2\ge\delta\|a\|_2\ (z\in\mathbb D,\,a\in E_1 );\ G\in H^\infty(E_2,E_1)\ \text{is a~function of minimal norm for which}\ GF=I_{E_1}\}$. Then $$ \frac1{\sqrt2\delta^2}\le C_1(\delta)\le\frac{20(\log 1/\delta+1)^{3/2}}{\delta^2},\qquad c_n\delta^{-(n-1)}\le C_n(\delta)\le a_n\delta^{-(2n+1)}, $$ where $a_n,c_n$ are constants depending only on $n$. The behavior of the function $C_1$ as $\delta\to1$ is described. Other results are obtained also.
@article{ZNSL_1981_113_a7,
     author = {V. A. Tolokonnikov},
     title = {Estimates in the {Carleson} corona theorem, ideals of the algebra $H^\infty$, a~problem of {S.-Nagy}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--198},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a7/}
}
TY  - JOUR
AU  - V. A. Tolokonnikov
TI  - Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a~problem of S.-Nagy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 178
EP  - 198
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a7/
LA  - ru
ID  - ZNSL_1981_113_a7
ER  - 
%0 Journal Article
%A V. A. Tolokonnikov
%T Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a~problem of S.-Nagy
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 178-198
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a7/
%G ru
%F ZNSL_1981_113_a7
V. A. Tolokonnikov. Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a~problem of S.-Nagy. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 178-198. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a7/