Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 135-148

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the analog of Grothendieck's theorem is valid for a disk-algebra “up to a logarithmic factor”. Namely, if $T\in\mathscr L(C_A,L^1)$ and $\operatorname{rank}T\le n$ then $\pi_2(t)\le C(1+\log n)\|T\|$. The question of whether the logarithmic factor is actually necessary remains open. It is also established that $C^*_A$ is a space of cotype $q$ for any $q$, $q>2$. The proofs are based on a theorem of Mityagin–Pelchinskii: $\pi_p(T)\le c\cdot p\cdot i_p(T)$, $p\ge2$, for any operator $T$ acting from a disk-algebra to an arbitrary Banach space.
@article{ZNSL_1981_113_a5,
     author = {S. V. Kislyakov},
     title = {Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--148},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a5/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 135
EP  - 148
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a5/
LA  - ru
ID  - ZNSL_1981_113_a5
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 135-148
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a5/
%G ru
%F ZNSL_1981_113_a5
S. V. Kislyakov. Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 135-148. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a5/