Counterexample to a~uniqueness theorem foranalytic operator functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 261-263
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that there exists a bounded holomorphic operator-function $z\mapsto F(z)$, $|z|1$, with compact values (in a separable Hilbert space) and such that its boundary values $F(\zeta)$, $|\zeta|=1$, are compact on one (given) arc of the circle and not compact on the other. The corresponding example is constructed with the help of vectorial Hankel operators.
@article{ZNSL_1981_113_a21,
author = {D. R. Yafaev},
title = {Counterexample to a~uniqueness theorem foranalytic operator functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {261--263},
publisher = {mathdoc},
volume = {113},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a21/}
}
D. R. Yafaev. Counterexample to a~uniqueness theorem foranalytic operator functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 261-263. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a21/