Counterexample to a~uniqueness theorem foranalytic operator functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 261-263

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a bounded holomorphic operator-function $z\mapsto F(z)$, $|z|1$, with compact values (in a separable Hilbert space) and such that its boundary values $F(\zeta)$, $|\zeta|=1$, are compact on one (given) arc of the circle and not compact on the other. The corresponding example is constructed with the help of vectorial Hankel operators.
@article{ZNSL_1981_113_a21,
     author = {D. R. Yafaev},
     title = {Counterexample to a~uniqueness theorem foranalytic operator functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {261--263},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a21/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Counterexample to a~uniqueness theorem foranalytic operator functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 261
EP  - 263
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a21/
LA  - ru
ID  - ZNSL_1981_113_a21
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Counterexample to a~uniqueness theorem foranalytic operator functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 261-263
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a21/
%G ru
%F ZNSL_1981_113_a21
D. R. Yafaev. Counterexample to a~uniqueness theorem foranalytic operator functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 261-263. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a21/