Modulus of boundary values of analytic functions of class~$\Lambda^n_\omega$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 258-260

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\omega$ be a modulus of continuity, $\Lambda^n_\omega$ be the class of all functions analytic in the unit disk of the complex plane and such that $$ |f^{(n)}(z)-f^n(\zeta)|\le C_f\omega(|z-\zeta|)\quad(|z|,|\zeta|1). $$ A condition is given (depending essentially on $\omega$), necessary for a nonnegative function defined on the unit circle to coLncide with the modulus of some function of class $\Lambda^n_\omega$.
@article{ZNSL_1981_113_a20,
     author = {N. A. Shirokov},
     title = {Modulus of boundary values of analytic functions of class~$\Lambda^n_\omega$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {258--260},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a20/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Modulus of boundary values of analytic functions of class~$\Lambda^n_\omega$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 258
EP  - 260
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a20/
LA  - ru
ID  - ZNSL_1981_113_a20
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Modulus of boundary values of analytic functions of class~$\Lambda^n_\omega$
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 258-260
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a20/
%G ru
%F ZNSL_1981_113_a20
N. A. Shirokov. Modulus of boundary values of analytic functions of class~$\Lambda^n_\omega$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 258-260. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a20/