Extension theorems with preservation of local approximation properties of functions in the nonisotropic case
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 247-252

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved on the extension of functions from a set of sufficiently general form with preservation of the order of local approximation characteristics of these functions, called the $(\alpha,p)$-modulus of continuity. Extension is realized by a linear operator. As corollaries, descriptions are obtained of traces of functions from spaces $B_p^{\lambda\theta}$ and $BMO$ on compacta of sufficiently general form.
@article{ZNSL_1981_113_a18,
     author = {P. A. Shvartsman},
     title = {Extension theorems with preservation of local approximation properties of functions in the nonisotropic case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--252},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a18/}
}
TY  - JOUR
AU  - P. A. Shvartsman
TI  - Extension theorems with preservation of local approximation properties of functions in the nonisotropic case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 247
EP  - 252
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a18/
LA  - ru
ID  - ZNSL_1981_113_a18
ER  - 
%0 Journal Article
%A P. A. Shvartsman
%T Extension theorems with preservation of local approximation properties of functions in the nonisotropic case
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 247-252
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a18/
%G ru
%F ZNSL_1981_113_a18
P. A. Shvartsman. Extension theorems with preservation of local approximation properties of functions in the nonisotropic case. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 247-252. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a18/