Interpolation by analytic functions from Besov spaces $B_p^0$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 215-217
Voir la notice de l'article provenant de la source Math-Net.Ru
Some assertions on free interpolation in spaces of functions analytic in the unit disk with boundary values from the Besov classes $B_p^0(\mathbb T)$ ($1\le p+\infty$, $\mathbb T$ is the unit circle) are formulated.
@article{ZNSL_1981_113_a12,
author = {S. A. Vinogradov and A. M. Kotochigov},
title = {Interpolation by analytic functions from {Besov} spaces $B_p^0$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {215--217},
publisher = {mathdoc},
volume = {113},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a12/}
}
TY - JOUR AU - S. A. Vinogradov AU - A. M. Kotochigov TI - Interpolation by analytic functions from Besov spaces $B_p^0$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1981 SP - 215 EP - 217 VL - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a12/ LA - ru ID - ZNSL_1981_113_a12 ER -
S. A. Vinogradov; A. M. Kotochigov. Interpolation by analytic functions from Besov spaces $B_p^0$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 215-217. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a12/