Analytic continuation from a~continuum to its neighborhood
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 27-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $r$ be a positive number. A function $f$ analytic in an open set $\mathcal O\subset\mathbb C$ is called $r$-analytic on the set $E$, $E\subset\mathcal O$, if $\varlimsup_{k\to+\infty}\bigl|\frac{f^{(k)}(t)}{k!}\bigr|^{1/k}\le\frac1r$ ($t\in E$). THEOREM. Let $K$ be a compact connected subset of the plane. For any $r>0$ there exists an open neighborhood $V$ of the set $K$ such that any function $r$-analytic on coincides in some neighborhood of the set $K$ with a function analytic in $V$. This theorem answers a question posed in the collection (RZhMat., 1979, 3B536, pp. 33–35 of the book).
@article{ZNSL_1981_113_a1,
     author = {A. L. Varfolomeev},
     title = {Analytic continuation from a~continuum to its neighborhood},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a1/}
}
TY  - JOUR
AU  - A. L. Varfolomeev
TI  - Analytic continuation from a~continuum to its neighborhood
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 27
EP  - 40
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a1/
LA  - ru
ID  - ZNSL_1981_113_a1
ER  - 
%0 Journal Article
%A A. L. Varfolomeev
%T Analytic continuation from a~continuum to its neighborhood
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 27-40
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a1/
%G ru
%F ZNSL_1981_113_a1
A. L. Varfolomeev. Analytic continuation from a~continuum to its neighborhood. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 27-40. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a1/