Analytic continuation from a~continuum to its neighborhood
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 27-40
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $r$ be a positive number. A function $f$ analytic in an open set $\mathcal O\subset\mathbb C$ is called $r$-analytic on the set $E$, $E\subset\mathcal O$, if $\varlimsup_{k\to+\infty}\bigl|\frac{f^{(k)}(t)}{k!}\bigr|^{1/k}\le\frac1r$ ($t\in E$).
THEOREM. Let $K$ be a compact connected subset of the plane. For any $r>0$ there exists an open neighborhood $V$ of the set $K$ such that any function $r$-analytic on coincides in some neighborhood of the set $K$ with a function analytic in $V$. This theorem answers a question posed in the collection (RZhMat., 1979, 3B536, pp. 33–35 of the book).
@article{ZNSL_1981_113_a1,
author = {A. L. Varfolomeev},
title = {Analytic continuation from a~continuum to its neighborhood},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--40},
publisher = {mathdoc},
volume = {113},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a1/}
}
A. L. Varfolomeev. Analytic continuation from a~continuum to its neighborhood. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 27-40. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a1/