$(A,\vec0)$-elliptic equations with a~weak degeneracy
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 75-84

Voir la notice de l'article provenant de la source Math-Net.Ru

One establishes existence and uniqueness theorems for the generalized solution of the general boundary-value problem for quasilinear elliptic equations of the second order admitting a weak fixed ellipticity degeneracy. In the case of linear equations one proves the Fredholm solvability of the indicated problem.
@article{ZNSL_1981_112_a6,
     author = {A. V. Ivanov},
     title = {$(A,\vec0)$-elliptic equations with a~weak degeneracy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--84},
     publisher = {mathdoc},
     volume = {112},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a6/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - $(A,\vec0)$-elliptic equations with a~weak degeneracy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 75
EP  - 84
VL  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a6/
LA  - ru
ID  - ZNSL_1981_112_a6
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T $(A,\vec0)$-elliptic equations with a~weak degeneracy
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 75-84
%V 112
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a6/
%G ru
%F ZNSL_1981_112_a6
A. V. Ivanov. $(A,\vec0)$-elliptic equations with a~weak degeneracy. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 75-84. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a6/