$(A,\vec0)$-elliptic equations with a~weak degeneracy
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 75-84
Voir la notice de l'article provenant de la source Math-Net.Ru
One establishes existence and uniqueness theorems for the generalized solution of the general boundary-value problem for quasilinear elliptic equations of the second order admitting a weak fixed ellipticity degeneracy. In the case of linear equations one proves the Fredholm solvability of the indicated problem.
@article{ZNSL_1981_112_a6,
author = {A. V. Ivanov},
title = {$(A,\vec0)$-elliptic equations with a~weak degeneracy},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--84},
publisher = {mathdoc},
volume = {112},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a6/}
}
A. V. Ivanov. $(A,\vec0)$-elliptic equations with a~weak degeneracy. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 75-84. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a6/