Isomorphism of one-place functors~$\operatorname{Ext}$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 71-74
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Lambda$ be an associative ring with identity. One considers the category of left (unitary) $\Lambda$-modules $\mathfrak M$ and also the contravariant and the covariant functors $\operatorname{Ext}^1_\Lambda(\ ,A)$ and $\operatorname{Ext}^1_\Lambda(A,\ )$: $_\Lambda\mathfrak M\to{}_\mathbb Z\mathfrak M$. One proves the following results: (1) If the homomorphism of $\Lambda$-modules $A\to B$ induces an isomorphism $\operatorname{Ext}^1_\Lambda(\ ,A)\to\operatorname{Ext}^1_\Lambda(\ ,B)$, then there exist injective $\Lambda$-modules $J_1$ and $J_2$ such that $A\oplus J_1\approx B\oplus J_2$. (2) Every functorial morphism $\operatorname{Ext}^1_\Lambda(\ ,A)\to\operatorname{Ext}^1_\Lambda(\ ,B)$ induces a certain homomorphism of $\Lambda$-modules $A\to B$. One also obtains a dual result.
@article{ZNSL_1981_112_a5,
author = {M. B. Zvyagina},
title = {Isomorphism of one-place functors~$\operatorname{Ext}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {71--74},
publisher = {mathdoc},
volume = {112},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a5/}
}
M. B. Zvyagina. Isomorphism of one-place functors~$\operatorname{Ext}$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 71-74. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a5/