Theory of nonunivalent mappings of multiply connected domains
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 184-197

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper one investigates new classes of regular functions in arbitrary domains, both with one and two distinguished boundary components. Special cases of these classes are the classes of mappings considered by Yu. E. Alenitsyn, I. P. Mityuk, and T. Kubo.
@article{ZNSL_1981_112_a14,
     author = {V. A. Shlyk},
     title = {Theory of nonunivalent mappings of multiply connected domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--197},
     publisher = {mathdoc},
     volume = {112},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a14/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - Theory of nonunivalent mappings of multiply connected domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 184
EP  - 197
VL  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a14/
LA  - ru
ID  - ZNSL_1981_112_a14
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T Theory of nonunivalent mappings of multiply connected domains
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 184-197
%V 112
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a14/
%G ru
%F ZNSL_1981_112_a14
V. A. Shlyk. Theory of nonunivalent mappings of multiply connected domains. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 184-197. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a14/