Covering theorems in classes of Bieberbach--Eilenberg functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 143-158
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper one finds Koebe domains, i.e., the largest set belonging to the image of a domain, in the corresponding classes of univalent Bieberbach–Eilenberg functions in the circular ring $\rho|\zeta|1$ and in the circle $|\zeta|1$.
			
            
            
            
          
        
      @article{ZNSL_1981_112_a10,
     author = {G. V. Kuz'mina},
     title = {Covering theorems in classes of {Bieberbach--Eilenberg} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {112},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a10/}
}
                      
                      
                    G. V. Kuz'mina. Covering theorems in classes of Bieberbach--Eilenberg functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 143-158. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a10/